The metric dimension of the circulant graph c(n, ±{1, 2, 3, 4}) Journalartikel uri icon

Abstract

  • Let G =(V,E) be a connected graph and let d(u, v) denote the distance between vertices u, v ∈ V. A metric basis for G is a set B ⊆ V of minimum cardinality such that no two vertices of G have the same distances to all points of B. The cardinality of a metric basis of G is called the metric dimension of G, denoted by dim(G). In this paper we determine the metric dimension of the circulant graphs C(n, ±{1, 2, 3, 4}) for all values of n.

Veröffentlichungszeitpunkt

  • 2017

Review-Status

  • Peer-Reviewed

Zugangsrechte

  • Open Access

Heftnummer

  • 3

Band

  • 69

Startseite

  • 417

letzte Seite

  • 441