Mechanical Behavior of Thermoplastic Unidirectional-Tape-Reinforced Polycarbonate Produced by Additive Manufacturing: Experimental Analysis and Practical Numerical Modeling Journalartikel uri icon

 

Abstract

  • Additive Manufacturing (AM) using Fused Layer Modelling (FLM) often results in polymer components with limited and highly anisotropic mechanical properties, exhibiting structural weaknesses in the layer direction (Z-direction) due to low interlaminar adhesion. The main objective of this work was to investigate and quantify these mechanical limitations and to develop strategies for their mitigation. Specifically, this study aimed to (1) characterize the anisotropic behavior of unreinforced Polycarbonate (PC) components, (2) evaluate the effect of continuous, unidirectional (UD) carbon fiber tape reinforcement on mechanical performance, and (3) validate experimental findings through Finite Element Method (FEM) simulations to support predictive modeling of reinforced FLM structures. Methods involved experimental tensile and 3-point bending tests on specimens printed in all three spatial directions (X, Y, Z), validated against FEM simulations in ANSYS Composite PrepPost (ACP) using an orthotropic material model and the Hashin failure criterion. Results showed unreinforced samples had a pronounced anisotropy, with tensile strength reduced by over 70% in the Z direction. UD tape integration nearly eliminated this orthotropic behavior and led to strength gains of over 400% in tensile and flexural strength in the Z-direction. The FEM simulations showed very good agreement regarding initial stiffness and failure load. Targeted UD tape reinforcement effectively compensates for the weaknesses of FLM structures, although the quality of the tape–matrix bond and process reproducibility remain decisive factors for the reliability of the composite system, underscoring the necessity for targeted process optimization.

Veröffentlichungszeitpunkt

  • 2025

Heftnummer

  • 4

Band

  • 6

Seitenzahl

  • 25