Ultra-fast laser-based surface engineering of conductive thin films Journalartikel uri icon

 

Abstract

  • Modern electronics facilitate the need for fast, efficient, and reliable methods for direct laser-based surface engineering of conductive thin film materials on flexible substrates. Recent advances in pulsed laser source development only incrementally increased the processing speeds, as those are limited by the available scanning systems. Our goal was to combine a high pulse repetition frequency high-power pulse-on-demand fiber laser source with an ultra-fast resonant scanner to achieve high throughput surface engineering. The enabling factor to compensate a resonant scanner’s sinusoidal movement were the laser’s intrinsic pulse-on-demand capabilities beyond simple pulse picking solutions.

    The high temporal resolution at full laser power was exploited for spatially controlled surface texturing, allowing a minimally 3 μm positioning accuracy throughout the scanner’s range at up to 60 m/s scan speed with a 10 μm laser spot size. We applied the setup to processing of ITO and metallic films on flexible substrates for touchscreens, position sensors, or EM shielding. Surface modification and patterning of the conductive layer was successfully demonstrated while keeping the underlying surface intact. We employed a simple laser ablation model in comparison to the experimental data to improve the understanding of the ablation process. The resulting surface topography was observed and analysed.

Veröffentlichungszeitpunkt

  • 2020

Zugangsrechte

  • Open Access

Band

  • 509

Startseite

  • 144911